Even heat transfer


Today it was a terrible day to travel.  Due to an autumn storm I got rebooked and delayed. This prevented me from getting some work done on the corrugator this afternoon, so I’m using the time wisely to talk about another parallelism challenge or better put ‘controlled heat transfer’.

It is very important that an equal amount of heat transfer happens as well in machine direction as in cross direction.

A corrugator (“is not an evaporator”) has plenty places where heat is transferred to the liner fluting and corrugated board.  I already talked about the parallelism challenge from reel-stand towards the next stage in the unwinding in my first blog ‘parallelism’. That type of parallelism mostly prevents the forming of creases. Irregular tensions, however, can also cause irregular heat transfer. One only has heat transfer if there is a contact between paper and preheater, or hotplates, etc.

Once it comes to preheating, irregular web tension will result in irregular heating, causing warp at OS or DS depending where the irregular heating occurs.

IR_0126With a simple pyrometer (= an infra-red thermometer) one can check this.  Even a better tool is an IR camera, this can easily show differences between OS and DS in machine direction caused by irregular tensions. The rule here is to aim for only minor differences.

Online systems can also help us but their usefulness is as good as the correctness of the measurements. When using thermometers it is necessary to understand that one needs to adapt the sensitivity of the device depending on the materials that are measured (shiny steel, mat steel, coated liners, brown liners, white liners, etc.).

So lets now go in detail in to the double-backer.  We all are aware of the fact that the more shoes we apply – or rollers we engage – the more contact we are making, the more heat we are transferring. A key question is: do you know if the heat is equally transferred at OS and DS or even in MD?

I will gladly entertain you with some terribly disappointing (shocking?) images of irregular heat transfers on the double-backer.

Psi accupressure1

For these examples I am using real images I have ‘stolen’ from Alabany which is using a system called “Accu-pressure” to check the double-backer rollers, the shoes, the Shortt-press or combinations pressure towards the corrugated board.

The identification used is the following: dark colours show high pressure areas, light and yellow shades identify low pressure areas.

A special film is put under the belt and the shoes/rollers. Once the shoes/rollers are engaged, the amount of pressure à contact à heat transfer can be visualized in an image looking like the one underneath.

Accupressure-RT Norcro(4

 
Every red square represents a shoe. You don’t have to look close to see that on drive side there is no contact and in the middle there is an area with heavy contact that can cause scratches.Accupressure-RT Norcross (3)

In this way the whole double-backer section can be mapped and in this example above, one can clearly see that there is a difference between operating side and drive side.

On top of the previously mentioned pitfalls you also should take into account the simple mechanical system of siphons, valves that transport the steam in the cylinders and hotplates. All of this has to function correctly to make sure that we have no irregularities in heat amounts. Problems can easily be caused by corrosion, damage or failure.

I know, corrugating is complicated, so many things that can go wrong…  and yet also so many things that can work perfect.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s